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Abstract. Generating novel views from a single input is a challenging
task that requires the prediction of occluded and non-visible content.
Nevertheless, it is an interesting and active area of research due to its
several applications such as entertainment. In this work, we propose an
end-to-end architecture for monocular view synthesis based on the lay-
ered scene inference (LSI) method. The LSI uses layered depth images
that can represent complex scenes with a reduced number of layers. To
improve the LSI predictions, we develop two new strategies: (i) a pyra-
midal architecture that learns LDI predictions for different resolutions of
the input and (ii) an image outpainting for filling the missing informa-
tion at the LDI borders. We evaluate our method on the KITTI dataset,
and show that the proposed versions outperform the baseline.

Keywords: Monocular View Synthesis - Layered Depth Image - Pyra-
midal Network - Image Outpainting

1 Introduction

The monocular view synthesis aims to produce images from different viewpoints
of the scene using a single image as input. Either implicitly or explicitly, this
task involves interpreting complex structures in the scene through texture and
depth, and filling the content that is not visible in the original viewpoint.

This problem can benefit several other tasks, such as augmented reality sys-
tems. A very interesting application is the generation of parallax motion ef-
fect [8/12,121], in which a sequence of new views can be created from a single
source view. When we see the entire sequence, the objects close to the observer
must have a higher perceived velocity than the farther deep objects.

* This work was funded by Samsung Eletronica da Amazoénia Ltda., through the
project “Parallax Effect”, within the scope of the Informatics Law No. 8248/91.
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Recent work has used deep architectures to predict different representations
such as 3D meshes [9] or point clouds [20]. Two other approaches have been
widely explored to represent 3D scenes in complex images: multiplane image
(MPT) [41|10L|15L{17,[22] and layered depth images (LDI) [2,[3[14}[18]. According
to Shih et al. |[14], MPI may produce artifacts on sloped surfaces and contain
redundant information across its layers. Moreover, the high number of layers
typically used in MPIs leads to a high computational cost. For this reason, here
we explore LDI for a compact representation of the scene.

LDI represents a 3D scene by a layered representation. It was originally
proposed for image-based rendering [13] and defined as “a view of the scene from
a single input camera view, but with multiple pixels along each line of sight”.
As observed by the authors, the size of the LDI grows linearly with the observed
depth complexity in the scene. Each layer of the LDI consists of a 4-channel
image, in which the first three channels are the RGB information, and the last
one is the corresponding disparity map. The first layer represents the visible
content from the original viewpoint and, so its RGB channels correspond to the
input image. From the second layer onwards, the LDI stores the information
that was occluded in the first layer.

Some recent work aims to calculate new views from calibrated stereo im-
ages [4,15,22]. An even challenging approach is the prediction of new views
from a single view [3}[104[12,/17.|18]. Most of these works use deep networks to
solve intermediate tasks, but do not build a deep end-to-end model for the final
task (new view generation). An exception is the layered scene inference (LSI)
method [18], in which LDIs are calculated by an end-to-end network from either
monocular or stereo-based datasets. This type of strategy has the advantage
that intermediate tasks can benefit from the final supervision, which allows the
network to find the representation that best minimizes the final loss function.

In this work, we propose a set of incremental strategies based on LSI [18] to
improve the LDI prediction through deep end-to-end networks. More specifically,
we focus on (a) reducing the distortions present at the rendition boundaries and
(b) improving the overall rendering quality (similarity with the ground-truth). To
address these issues, we propose and analyze the use of (i) an outpainting method
to extrapolate the boundaries of the LDI and (ii) a pyramidal architecture, which
learns how to compute LDIs at multiple resolutions.

2 Proposed Method

In this section, we present our method and compare it with the baseline LSI [18].
Both methods are illustrated in Figure [I} The baseline uses an encoder-decoder
architecture, the DispNet [11], to predict LDI from an RGB source image. Then
a differentiable rendering is applied to compute the target image.

LST (18] was trained with a set of N inputs (I, I}', K", K[, R",t")ﬁ;l. Im-
ages I7' and I' are respectively the source image and an arbitrarily sampled
target, both from the same scene. Matrices K} and K}* define the intrinsic pa-
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Fig. 1: Overview of the baseline and our proposed method.

rameters of the cameras that captured the two images. Finally, the matrices R"™
and " describe the relative rotation and translation between both cameras.
An LDI representation with L layers is created from each source image I

It can be described as (Il, Dl)lL:17 where I' e D! are images that represent re-
spectively the texture and disparity of each pixel from I for the [-th layer. The
disparity maps must satisfy the condition D'(p) < D'*1(p), that is, the disparity
of the same pixel cannot be greater in a deeper layer. The reason for this condi-
tion is that, if the texture of an object took many layers to become visible, it is
farther away from the camera or covered by many objects. Therefore, it should
have a smaller disparity (greater depth).

From the input camera parameters and a predicted LDI, the LSI can project
the source on the target and compute the rendered texture using a differentiable
soft z-buffering. Then, the network is supervised by a set of five loss functions: (i)
the view synthesis loss Ly that compares the rendered and ground-truth targets;
(ii) the ‘min-view synthesis’ loss L, vs used to improve the background layers
contribution; (iii) the source consistency loss L. given by the Lo norm weighted
by the disparity map; (iv) the depth monotonicity loss L, that ensures a non-
increasing disparity; and (v) the smoothness loss Ly, given by the L; norm of
the second-order spatial derivatives of the predicted disparity maps. The loss
functions Lys and Ly,ys are based on a mask M defined to ignore the image
boundaries, since these pixels may be out of the field of view in the source image
and, therefore, the network does not have the required information for a reliable
prediction of them. This aspect will be further discussed in Subsection [2.1

From these five loss functions, the final objective function Lg,, is defined as

Eﬁnal = Avs‘cvs‘. + )\m—vs‘cm—vs + )\SC‘CSC + )\incﬁinc + ASmESHN (1)

where A, defines the weight of each loss function L.
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Our method introduces two new strategies in the baseline (Figure[L): (i) the
outpainting network, detailed in Subsection [2.I] that extrapolates the input im-
age borders and (ii) the pyramidal approach (Subsection , in which we use
the prediction from the immediately lower scale to support the current predic-
tion. The pipeline in each level is similar to the LSI, except for the outpainting
step. As the original, our network is trained in an end-to-end fashion.

2.1 Outpainting

As previously mentioned, the baseline uses loss functions that ignore the tar-
get image boundaries. This may lead to a poor prediction in that region. To
circumvent this, we extrapolate the source image so that the LDI has extra in-
formation at the image borders. These extra pixels will be used in rendering the
new images, allowing complete supervision of the target image. Other works in
the literature have already used outpainting as a strategy to extrapolate the field
of view of the representation to be rendered [14].
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Fig. 2: Overview of the outpainting strategy.

For the outpainting, we use an encoder-decoder network recently pro-
posed [19], which is trained with pixel-wise and adversarial losses. Initially, the
outpainting network is pre-trained separately, instead of training the model from
scratch along with the LDI predictor. After the pre-training, we use the weights
of the outpainting network in the equivalent layers of ours, which is then trained
keeping the outpainting layers frozen. This process is illustrated in Figure [2}

The leftmost image in the pre-training figure is the original one. During the
pre-training, we crop their boundaries removing some pixels and the network
extrapolates the cropped image, producing a new image with the same resolu-
tion as the original one. In the training, the input images are also cropped and
extrapolated by the pre-trained model. This new boundary added to the source
gives extra information to render the target. Thus, although the target still has
half the input size (i.e., cropped image size), it is built from a broader field of
view thanks to the extrapolation. For this reason, we modify the loss functions
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Lys and L5 to consider the entire images in the supervision, which are now
described as

Lys = |1 = It||1, Limvs = Zmlin 11¢(pe) — ﬂ(?t)”l, (2)
Pt

where I; and I; are the original and predicted target image, and I} is the pre-
dicted image using only the [-th layer. To train the outpainting network, we use
the loss Ly defined in Equation [3] where I, is the ground-truth image for out-
painting, D°() is the discriminator loss for the extrapolated image I?, and the

A? is a constant weight. In the LSI network, we use the entire images as inputs
without the cropping step.

L2 =D Ls(ps) = I2(ps)ll2 + A°D° (L, I7). 3)

pPs

2.2 Pyramidal Network Architecture

Our second proposal is the use of a pyramidal architecture. Pyramidal architec-
tures [6] have been successfully used in diverse types of related problems, such as
depth estimation [1] and optical flow estimation [16]. This architecture predicts
a low resolution LDI and uses this prediction to compute the LDI at the next
highest resolution. Figure 3| presents a diagram of this strategy. The architecture
adopted for this task was inspired by the pyramidal PWC-Net [16] proposed for
optical flow prediction.
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Fig. 3: Representation of the pyramidal architecture.

As seen in the figure, we built a pyramid of features extracted from the input
image. It uses a convolutional network with learnable weights, that are learned
in the end-to-end training. According to Sun et al. [16], the main advantage of
the learnable feature pyramid over an image pyramid is that the former is robust
to shadows and lighting changes.

The network predicts an LDI representation for each level using the respec-
tive feature as input. To feed the encoder-decoder CNN, this feature is concate-
nated with the last LDI. The last LDI is bilinearly interpolated to match the
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feature size. A residual connection combines every representation into a single
one. Therefore, the network learns the complement of the LDI at each level. The
only exception is the first level of the pyramid, in which we do not use either
the concatenation or the residual connection, since no LDI representation is yet
available. The prediction of the LDI in each level uses a coarse-to-fine strategy.
After computing the coarse LDI (as the complement of the last LDI), it feeds
another CNN in order to predict the fine LDI.

The architecture illustrated in Figure [3| is an end-to-end trained network,
including the layers responsible for the construction of the feature pyramid and
the encoder-decoder CNN. The new final loss function comprising all pyramid
levels is described as

M
Do Avs LU 4 Amovs L1

m-vs

+ Ascﬁgg + )\inc['irgc + Asm‘cgrln
i (4)

Eﬁnal =

where M is the number of pyramid levels and L7 is the loss components calcu-
lated specifically for the m-th pyramid level.

3 Results

In this section, we show and discuss our results using the raw KITTI [5], which
contains videos captured by a recording platform equipped with stereo cameras
and other sensors that provide diverse information such as geographic coordi-
nates. The reader may refer to the dataset paper for further details about the
cameras and recording setup. As in the LSI [18], we randomly pick the right or
left image as the source and the other one as the target. We use 33 sequences and
multiple image pairs from each sequence, resulting in 22600 samples for training
and 888 for validation.

Our method was implemented using PyTorch for deep learning, based on the
TensorFlow LSI implementation provided by Tulsiani et al. |18]. The results of
the reimplementation were very similar to the ones reported by the authors. The
lambda weights of Equations [1| and |4 were 1, 1, 25, 25 and 0.65, respectively.
The higher weights were assigned to Ls. and L, to correct the discrepancy
among the losses. For the outpainting-based versions, the A, was set to 1.
We performed a standard data augmentation, with brightness, contrast, and
saturation adjustment. The images were normalized in the range of [0,1] and
resized to 512x256 pixels. The entire network was trained for 40 epochs. The
initial learning rate was set to le-3 for LSI and 2e-5 for the pyramidal network.
The learning rate scheduler multiplies it by 0.1 at every 20 epochs.

The PyTorch implementation of the outpainting network was provided by
Hoorick |7]. The outpainting pre-training was done using the same training sam-
ples as the entire network. The training loss was given in Equation [3] It was
trained for 130 epochs. The value of A° was set to 0.001, 0.005, 0.015 and 0.040,
in the epochs 1, 10, 30 and 60, respectively.

Table [1| presents the results of the different versions of our method com-
pared to the baseline using the pixel-wise L; error and the Structural Similarity
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(SSIM) metric. In addition to the traditional L error, we also show I-L; and
O-L;, which consider only inner (I-L;) or outer (O-Lp) pixels to compute the
metric. For them, we considered a border of 10% in each side, based on the
mask M used in the original LSI. Similarly, we also compare the methods using
inner- and outer-SSIM. In the table, LSI, LSI+IO and PyLSI refer respectively
to the PyTorch baseline, the LSI with the image outpainting network and the
pyramidal LSI. Besides the sequential combination of outpainting and pyramidal
strategy presented in Figure [1] referred to as SeqLSI, we also tested a parallel
version (ParLST) with an offline late fusion. This fusion blends the rendering of
two methods (Figures [2[and . The inner and outer pixels of the final rendering
are directly computed from the rendering of the pyramidal and the outpaint-
ing networks, respectively. To avoid discontinuities, we used a blending mask
smoothed by a Gaussian filter.

Table 1: L; | error and SSIM 7 on the validation set of the KITTI dataset.

1-layer LDI 2-layer LDI
Version L1 I-L1 O-L1 Version L1 I-L1 O-L1
LSI [18] 0.0613 0.0539 0.0746 LSI [18] 0.0609 0.0552 0.0710
LSI+IO 0.0533 0.0512 0.0571 LSI+IO 0.0670 0.0655 0.0696
PyLSI 0.0482 0.0396 0.0643 PyLSI  0.0597 0.0549 0.0686
SeqLLSI ~ 0.0547 0.0547  0.0588 SeqLLSI  0.0599 0.0582 0.0629
ParLSI  0.0458 0.0421 0.0604 ParLSI  0.0606 0.0596 0.0646
Version SSIM I-SSIM O-SSIM Version SSIM I-SSIM O-SSIM
LSI [18] 0.7289 0.7584 0.5507 LSI [18] 0.7223 0.7499 0.5489
LSI4+IO 0.7208 0.7388 0.6217 LSI4+1O 0.7034 0.7208 0.6168
PyLSI 0.7567 0.7724 0.5946 PyLSI 0.7424 0.7575 0.5810
SeqLSI  0.7037 0.7195 0.6145 SeqLSI  0.7528 0.7711 0.6556
ParLSI 0.7798 0.8047 0.6309 ParLSI 0.7687 0.7931 0.6350

We can see from Table [1| that the PyLSI outperformed the baseline LSI in
all cases. This is more evident in the 1-layer LDI, where the I-Lq, for instance,
reaches 0.0396, a 26% drop compared to the LSI. Although the 2-layer PyLSI
has also improved the LSI, it was not so intense as in the 1-layer, leading to a
decrease of only 0.5% in I-L;. As expected, the LSI+IO achieved good results
in outer pixels, where the LSI has its worst results. In the 1-layer LDI, the O-L;
was closer to the other metrics and presented a drop of about 23% compared to
the LSI. The O-SSIM was increased by around 13%.

The numerical results of the 1-layer SeqLL.SI were not as good as those achieved
by the isolated versions in inner pixels (PyLSI) and outer pixels (LSI410), al-
though it did outperform the baseline in most cases. However, the 2-layer version
obtained better SSIM values in all regions of the image. On the other hand, 1-
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layer ParLLSI achieved the best results for L,; and all SSIM values, whereas the
2-layer version obtained the best results on SSIM.

Figure (] presents a comparison between the results of LSI and PyLSI. Sub-
figures [4a] and show the new views of LSI and PyLSI, respectively, stacked
with the target image on the RGB channels. On these stacked images, we expect
values close to gray when the prediction is good and close to green or purple
when it is not. Finally, Subfigures [Id and [d] present a zoomed region of the
disparity and stacked images of the LSI and the PyLSI, respectively.

EE;* "\ if;- P\

) stacked view - LSI ) stacked view - PyLSI

) LSI

Fig. 4: Comparison between LSI (I; = 0.0683) and PyLSI results (L; = 0.0328).

d) PyLSI

On an overview of the stacked images, we can see that the PyLSI version has
values closer to gray, even in more homogeneous regions, such as the sky. This
shows that the intensities and colors of the PyLSI prediction are closer to the
ground-truth than the LSI prediction. In addition, as we can see in the zoomed
images, the PyLSI disparity in the car is better defined, which leads to better
alignment at the prediction.

Figure [5| presents another example for all versions. Comparing the views
rendered by LSI and PyLSI, we can see an improvement in the image boundaries.
However, as there is no extrapolation and supervision on these regions, they are
not reliable and lead to distortions in the objects (highlighted). The outpainting
improves these distortions but generates some artifacts in the three versions that
include it (LSI4+I0, SeqLSI and ParLSI). These artifacts could be removed using
a more recent and advanced outpainting network. Despite the artifact, the best
visual result is achieved by SeqLSI.

4 Conclusions

In this work, we presented a new method for monocular view synthesis based
on LSI. Our method is composed of an initial outpainting step and a pyramidal
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(a) target image (b) new view - LSI (¢) new view - PyLSI
O-L;, = 0.1095, I-L; = 0.0484  O-L; = 0.0982, I-L; = 0.0356

K

(d) new view - LSI+IO (e) new view - SeqLSI (f) new view - ParLSI
O-L; = 0.0933, I-L; = 0.0331 O-L; = 0.0915, I-L; = 0.0361 O-L; = 0.0913, I-L; = 0.0288

Fig. 5: Example of results for all versions.

strategy. The main goal of the outpainting network was to increase the original
field of view and improve the prediction in the boundaries of the new view. The
pyramidal strategy was employed to improve the overall quality by generating
a new view for different resolutions of the input. We tested the two strategies
separately (LSI+IO and PyLSI), and combined them sequentially (SeqLSI) and
in parallel (ParLSI). We compared them with the baseline using the pixel-wise
L; and SSIM metrics. For both, we considered three versions (traditional, inner
and outer averages) in order to evaluate the effectiveness of the methods in
different parts of the images. Our results suggested that the pyramidal strategy
achieved superior results with the inner metrics, whereas the outpainting tended
to perform better at the boundaries. ParLSI achieved the best results in most
cases, especially with SSIM, but, in our visual inspection, the SeqLSI generated
images with superior quality. We observed some artifacts in the outpainting-
based versions that can be avoided using a more advanced network in the future.
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