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Abstract—Nowadays, scene text detection has received a lot of attention
due to its complexity given variations in terms of orientations, font size,
aspect ratio, and natural backgrounds. In this vein, several deep neural
networks have been proposed to deal with this challenging problem.
However, such networks produce “heavy” models, hampering their use
in applications running in devices with computational constraints. Addi-
tionally, few works are focused on the detection of multi-oriented and/or
multi-lingual text. Herein, we propose an end-to-end tiny convolutional
neural network for multi-oriented multi-lingual scene text called Pelee-
Text. Experimental results show that Pelee-Text is at least 3 times smaller
than its counterparts with a speed of 2.93 and 18.64 frames per second
for its multi-scale and 768-scale versions, respectively. Moreover, in
terms of F-measure, our method achieved competitive results on four
well-known datasets, i.e., ICDAR’2011 (90.96%), ICDAR’2013 (85.24%),
ICDAR’2015 (80.08%), and MSRA-TD500 (80.90%).

Keywords-Text detection, multi-oriented text, multi-lingual, end-to-end,
mobile-network, convolutional neural network.

I. INTRODUCTION

Scene text detection and recognition play an important role in a

wide range of applications in real-world scenarios, such as traffic sign

detection [1], image retrieval [2], and assistive applications [3]. Both

detection and recognition tasks are challenging problems, which have

been attracting the attention of machine learning and computer vision

communities. Different from object detection and document analysis

problems, the difficulty in detecting and recognizing texts in a scene

relies on variations in textual elements related to font styles and sizes,

blurring, orientations, projections, and complex/natural backgrounds.

Recently, methods based on Convolutional Neural Network (CNN)

emerged as a promising technique to deal with several hard problems

in scene text localization and recognition such as multi-scale and

oriented text detections [4]. However, those current solutions address

these issues by using deep architectures, such as VGG and ResNet [5,

6], which are computationally expensive in terms of memory and

storage footprints. That makes their use unfeasible, in practice, in

applications with computational constraints, such as mobile devices.

Aligned with this trend, He et al. [7] deal with text detection using

direct regression and their proposal was evaluated over three deep

network architectures (VGG-16 [5], ResNet-50 [6], and S-VGG [8]),

originally designed for object detection. Moreover, we noticed that

several approaches in the literature go deeper without concerns with

efficiency aspects by fusing two or more deep architectures. In this

vein, IncepText [9] combines two ResNet-101, two ResNet-50, and

one VGG network. Fast Oriented Text Spotting method (FOTS) [10]

merge tasks for text detection and recognition in the training stage.
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This method uses a ResNet-50 for text detection and a Recurrent Neu-

ral Network encoder composed of a VGG-16 and one bi-directional

Long Short-Term Memory [11], along with a Connectionist Temporal

Classification decoder [12] for text recognition. In total, FOTS ranges

from 34 to 63 million of parameters.

Similarly, TextBoxes++ [4] uses VGG-16 aiming to overcome the

limitations regarding arbitrary-oriented text detection by adapting

the Single Shot MultiBox Detector network (SSD) [13]. Addition-

ally, the authors used a Convolutional Recurrent Neural Network

(CRNN) [14] for text recognition. Also inspired by VGG-16 archi-

tecture, Lyu et al. [15] presented an approach that takes advantage of

Feature Pyramid Networks (FPN) [16] and Deconvolutional Single

Shot Detector [17] for localizing corner points and segmenting text

regions through position-sensitive maps prediction.

Currently, most of the methods focus on text segmentation as start-

ing point instead of bounding boxes regression, which is especially

helpful for deal with arbitrary shaped text. In this context, based on

geometric attributes, Long et al. [18] proposed TextSnake that uses

a Fully Convolutional Network (FCN) based on a U-Net approach

with a VGG-16 network as backbone. Based on the same feature

extractor, PixelLink [19] and TextField [20] define text instances

taking into account pixel-wise and binary masks, respectively. Mask

TextSpotter [21], in turn, defines a specific branch for handling

text instances segmentation using a FPN with ResNet, along with

a Fast R-CNN [22] for bounding boxes regression. Using a ResNet,

PSENet [23] is a recent work based on segmentation for arbitrarily-

oriented text detection that effectively separates closed text instances.

As we can observe, state-of-the-art methods are based in CNN-

based solutions; nevertheless, they produce “heavy” models (all

previously mentioned models are about 138MB and 350MB of model

size), which may difficult their use in devices with computational

restrictions. With this regards, this work introduces the Pelee-Text

network, an end-to-end solution for text localization handling multi-

oriented and multi-lingual texts. Our solution takes advantage of

best features of TextBoxes++ [4] and PeleeNet [24], which are

architectures specifically designed for image classification in restric-

tive computing scenarios. We evaluate our proposal over four well-

known datasets: ICDAR’2011 (born-digital images), ICDAR’2013

(near horizontal text), ICDAR’2015 (arbitrary-oriented text), and

MSRA-TD500 (multi-oriented and multi-lingual).

Our experiments demonstrated the ability of Pelee-Text by achiev-

ing competitive results. Experimentally, we show that Pelee-Text is

at least 3 times smaller than its counterparts with a speed of 2.93 and

18.64 frames per second for its multi-scale and 768-scale versions,

respectively. To the best of our knowledge, this is the first approach

to scene text detection using mobile-oriented CNN architectures.

This paper is organized as follows. Section II presents our method.

Section III details the adopted experimental protocol. Next, in Sec-

tion IV, we present and discuss achieved results. Finally, Section V

presents our conclusions and possible future research venues.



II. PROPOSED METHOD: PELEE-TEXT

This section presents the Pelee-Text network, our proposal of a fast

and lightweight architecture designed for detecting and recognizing

multi-oriented and multi-lingual text. Our goal is to introduce an

efficient and effective architecture for scene text detection, which is

expected to be more appropriate for constrained processing scenarios.

A. Overview

The proposed solution adopts Pelee [24], an efficient network

recently proposed for object detection. In terms of efficiency, Pelee

network was demonstrated to present a lower memory footprint and

higher rates of FPS in comparison to MobileNetV2 network [25].

Pelee was adapted towards localizing multi-oriented textual el-

ements in natural scenes, inspired by recent research results of

scene text detection communities. As a result, we came up with

a competitive “mobile” CNN, named Pelee-Text, which achieves

competitive results in both tasks, text detection and recognition over

four popular public datasets.

In natural scenes, oriented text and distortions associated with

image projections are the main concerns for localizing textual el-

ements. In this scenario, the typical solution based on determin-

ing rectangular bounding boxes are not convenient. To overcome

this limitation, Pelee-Text uses text-boxes layers [4], which repre-

sent regions of interest as quadrilaterals defined by four vertices

(x1, y1, x2, y2, x3, y3, x4, y4), in clockwise order, where (x1, y1)
refers to the first point located on the top left. Similar to other

networks for object detection, the Pelee adopted the use of a Single

Short MultiBox Detector (SSD) [13] for detecting objects, which

performs a regression during the training stage for estimating the

center (cx, cy) of the default bounding boxes (d) and their respective

width (w) and height (h). In turn, our method performs a regression

in the training stage towards estimating offsets for each vertex of the

quadrilateral. It also assigns a confidence score c for each bounding

box, considering a two-class classification problem defined in terms

of text and non-text classes.

Additionally, to predict bounding boxes more efficiently, we use

a simplified SSD version that uses two 19 × 19 feature maps with

different prior-boxes scales in replacement to the 38 × 38 feature

map of original SSD. Next, the last six layers were built considering

kernels with rectangular receptive fields, by adopting kernels size 3×
5, to deal with long continuous text regions and arbitrary orientations.

During the test stage, we use a complementary strategy for defining

final bounding boxes applying a Non-Maximum Suppression (NMS)

procedure over results from four scales (384×384, 768×768, 1024×
1024, and 1536× 1536), where each scale covers some special text

region that could be missed for the rest of scales.

Finally, for evaluating our method as an end-to-end approach (text

localization and recognition), we use a CRNN [14] for text recogni-

tion. For the end-to-end task, we expand the predicted bounding boxes

before sending them to the CRNN recognizer, because predicted

bounding boxes as well as the ground truth are very adjusted to the

word and this hampers the recognition task.

B. Architecture

In this work, we adopted the Pelee network as a feature extractor,

which comprises 5 stages. The first stage is composed of a stem block

designed to empower the network for a better image characterization

increasing the amount of channels with a minimum computational

costs. In order to find useful features from large objects, Two-Way

Dense Layers with stacked 3× 3 convolutions are used. In opposite

to DenseNet, whose one-way dense blocks work with number of

channels 4× larger than input channels, Pelee-Text inherits from

Pelee an efficient scheme to control the channel expansion on each

dense block using a two-way approach where each way works with

half of channels. Moreover, a transitional layer is used at the end of

each stage that does not compress the feature space, i.e., the same

number of input channels are used as output, which is important

to keep the feature discriminability [24]. An overview of Pelee-Text

architecture is presented in Figure 1.

Six convolutional layers were specifically designed to detect textual

elements at different scales using different feature maps. These layers

are: the final layer of third stage (19× 19) – used twice considering

different scales for prior-boxes; the last layer of the fourth stage (10×
10); and SSD extra-layers, which is referred to as conv2 (5 × 5),

conv4 (3× 3), and conv6 (1× 1) layers, respectively.

More specifically, these layers use 3 × 5 filters in order to have

receptive fields more appropriate to detect oriented textual elements.

Furthermore, Pelee-Text uses different aspect ratios (2, 3, 5, 1/2, 1/3
and 1/5), considering that texts are usually longer. Additionally, given

that some areas are not fully covered for prior-boxes and, therefore,

some text regions could be missed, we dense prior-boxes for covering

those isolated regions based on vertical offsets. For computing the

loss during training, we use the same function from [13], which takes

into account the losses of localization (Lloc) and confidence (Lconf ):

L(p, c, l, g) =
1

N
(Lconf(p, c) + αLloc(p, l, g)), (1)

where p are the predicted bounding boxes, c is the confidence of

being from the predicted class, l is the predicted location, g refers to

the ground truth, N is the number of matched default boxes, and α is

the weight for the Lloc. Moreover, Lloc is computed with the smooth

L1 loss and Lconf with a 2-class soft-max loss (text or background).

Before prediction, each feature map from the six source layers

passes through a residual block, and at the end, overlapped bounding

boxes are discarded using two levels of NMS. First, an NMS is

applied over bounding boxes with an overlap greater or equal than

0.5 taking into account the results from each of the four scales (384,

768, 1024, and 1536). Then, for text localization, a final NMS is

performed over the final results merged from the four scales, the

values for this second NMS stage are provided in Section III-B. On

the other hand, for filtering the final results in the end-to-end task,

we used Equation 2 proposed in [4], which takes advantage of the

detection (ds) and recognition (rs) scores:

S =
2× e(ds+rs)

eds + ers
. (2)

III. EXPERIMENTAL SETUP

In this section, we present the metrics adopted for measuring the

effectiveness of the proposed method and datasets, along with their

respective protocols.

A. Datasets

We evaluate our proposed method upon four benchmark datasets

widely used in the literature with different particularities, as described

in the following sections. Those datasets are detailed in Table I. The

SynthText dataset is used during our first training stage and then, we

executed a fine-tuning over each dataset.

B. Protocol

We train our network considering multiple stages towards aiding a

multi-scale detection. Furthermore, we split the batches between two

GPUs and the batch sizes differ between stages because of the image

size (see Table II). In the first stage, we used SynthText [26] dataset



Fig. 1: Overview of the Pelee-Text architecture. Stage0 is composed of a stem block, while the next stages are composed of two-way dense

blocks. At the end of each stage, a transition layer is added. On stages 0, 1, 2, 3 and 4 are used 3, 4, 8 and 6 two-way dense blocks,

respectively. At the end, a simplified version of the SSD is used. Additionally, all layers used for prediction pass through residual blocks.

TABLE I: Datasets.

#Train #Test Text
Dataset Images Images Orientation Languages

SynthText [26] 858, 750 – Horizontal English

ICDAR’2011 [27] 410 141 Horizontal English

ICDAR’2013 [28] 229 233 Horizontal English

ICDAR’2015 [29] 1000 500 Arbitrary-oriented English

MSRA-TD500 [30] 300 200 Multi-oriented English-Chinese

with a batch size of 48, then two final stages for fine-tuning on each

dataset with batch sizes of 48 and 10, respectively. Moreover, some

training parameters are adjusted through different stages, i.e., learning

rate, steps for learning rate decay, and Lloc weight. Additionally,

given that some textures are very similar to text in natural scenes,

we adjusted the ratio between the negatives and positives. Also, we

used the Stochastic Gradient Descent (SGD) to optimize our network

and the “Xavier” technique for initializing the weights. The weight

decay and momentum were fixed in 5×10−4 and 0.9, respectively. It

is worth mentioning that we used the same detection score (0.6) and

overlap threshold (0.2) from [4] for ICDAR’2013 and ICDAR’2015

datasets. On the other hand, for ICDAR’2011 and MSRA datasets,

those parameters were defined through a grid search procedure over

training datasets. The overlap threshold for the two datasets was 0.1,

and the detection score was 0.7 for ICDAR’2011 and 0.9 for MSRA.

We measure the effectiveness of our method in terms of Recall (R),

Precision (P), and F-measure (F1). In turn, the efficiency takes into

account the FPS, and memory and storage footprints. We consider

a predicted bounding box as a true positive if the Intersection over

Union (IoU) is equal or greater than 50%. To evaluate and compare

Pelee-Text against state-of-the-art methods, we use the evaluation

tools and lexicons (generic, weakly and strong) freely available for

each dataset in the ICDAR Competition official site.1 For ICDAR’13

dataset, we used the ICDAR13 metric, whereas for the MSRA dataset,

we converted its ground truth representation (x ,y, width, height, θ)

to quadrilateral format (x1, y1, x2, y2, x3, y3, x4, y4).

All experiments were performed considering an Intel(R) Core(TM)

i7-8700 CPU @ 3.20GHz with 12 cores, 64GB of RAM, Ubuntu 64-

bits OS and two GeForce GTX 1080ti.

IV. RESULTS AND DISCUSSION

This section presents the experimental results obtained to validate

our method. For comparison purposes, given that Textboxes++ is

directly related to Pelee-Text, we considered Textboxes++ MS which

achieved the best results in [4] (“ MS” refers to its multi-scale

version).

1http://rrc.cvc.uab.es/ (As of September 2019.)

A. Detecting Text in Born-Digital Images

We used the ICDAR’2011 dataset to analyze the effectiveness

of our method in detecting text in born-digital image (Table III).

This dataset contains low-resolution images with several JPG artifacts

since these images were collected from the Internet. We observed that

Pelee-Text was able to detect textual elements with better results than

several methods published in the literature. For instance, the Pelee-

Text MS reached a relative error reduction of 60.18% and 39.73%
in comparison with Jaderberg’s work [32] and TextBoxes [33],

respectively. Additionally, our single scale version of 768, running

at 18.64 FPS, outperforms all the methods and losses by only 0.2
percentage points against our multi-scale version.

B. Detecting Horizontal and Near-Horizontal Texts

Table IV shows several results for the ICDAR’2013 and IC-

DAR’2015, which contain horizontal and near-horizontal texts with

challenging scenarios. Given that our main focus is on the final

model size generated by each method, it is worth mentioning that,

for comparison purposes, in Table IV we considered only those

methods which have information about their model size or number of

parameters. That information was taken from their papers or authors’

official Github. Moreover, missing values in the table means that the

authors did not present those results on their papers.

As we can observe, our proposed network achieved competitive

results. For the ICDAR’2013, Pelee-Text presented a good balance

between F-measure and model size. In terms of model size, only

FCN [34] (57MB) is directly comparable to Pelee-Text (40MB);

however, our multi-scale version outperforms FCN by 2.24 and

26.08 percentage points in terms of F-measure on ICDAR’2013 and

ICDAR’2015 datasets, respectively. On the other hand, considering

state-of-the-art-methods, Textboxes++ MS [4], PixelLink MS [19],

MaskTextSpotter [21] and FOTS MS [10] outperform our method,

but their models size are 3.33, 6.15, 8.7, 3.38 times larger than

Pelee-Text, respectively, which make difficult their use in devices

with hardware constraints. Additionally, our single scale versions of

768 and 1024 obtained good results on the two datasets and they run

at 18.64 and 11.67 FPS, respectively.

C. Detecting Multi-Oriented Multi-Lingual Text

Table V shows a comparison of effectiveness considering the

MSRA-TD500 dataset. We can notice that our proposed method

was able to detect both English and Chinese texts, as illustrated

in Figure 2. This dataset contains high-resolution images and it is

composed of English and Chinese texts, which makes this dataset

more challenging than ICDAR’2013 and ICDAR’2015 datasets. The

experimental results showed that Pelee-Text presented better perfor-

mance results in terms of F-measure in comparison with methods



TABLE II: Parameter values and number of iterations used in the training protocol.

Learning Learning Image Negative Lloc Number of Iterations Steps for Learning Rate Decay
Stage Rate Size Ratio Weight ICDAR’2011 ICDAR’2013 ICDAR’2015 MSRA ICDAR’2011 ICDAR’2013 ICDAR’2015 MSRA

Stage 1 5× 10−3 384 3 0.8 80K 80K 80K 80K 60K 60K 60K 60K

Stage 2 5× 10−3 384 3 0.2 4K 6k 12K 8k 2k, 3k 2k, 4k 4k, 8k 2k, 4k, 5k

Stage 3 5× 10−4 768 6 1.0 18k 10k 18k 16k 8k, 12k, 16k 4k, 8K 10k 6k, 12k

(a) Successful cases.

(b) Failure cases.

Fig. 2: Detection results of our proposed method: (a) correct detections; (b) some failure cases.

TABLE III: Text detection results on ICDAR’11 dataset.

Methods P (%) R (%) F1 (%)

Text-CNN [31] 91.00 74.00 82.00

SynthText [26] 94.30 76.90 84.70

Jaderberg [32] 89.20 68.40 77.30

TextBoxes [33] 88.00 82.00 85.00

Pelee-Text 768 89.88 91.65 90.76

Pelee-Text MS 94.99 87.26 90.96

such as PixelLink [19] and TextSnake [18], which have heavier

models than ours, reaching a relative error reduction of 13.96% and

11.98%, respectively. Additionally, only TextField and the method

proposed by Lyu et al. [15] outperformed our method by 0.4 and

0.6 percentage points on F-measure, respectively; nevertheless, their

models in terms of Megabytes are at least 3× larger than Pelee-Text.

D. How Efficient is the Pelee-Text?

The comparison of efficiency in terms of both speed and mem-

ory footprints between Pelee-Text and our directly related work

(TextBoxes++ MS) revealed that our method achieved a better bal-

ance between efficiency and efficacy. Regarding the model size,

in terms of number of parameters, the Pelee-Text proved to be a

lighter model, being 3.33× smaller than TextBoxes++. Moreover,

concerning disk consumption, our proposed method also presented

a thinner model than TextBoxes++ MS, whose disk consumption

reached 133MB. In turn, Pelee-Text network requires only 40MB

to storage its model (Table IV). Additionally, in terms of frames

per second, Pelee-text is 1.29 times faster than its counterpart. In

summary, the Pelee-Text network was superior in terms of frames

per second and model size reduction, which reflects a lower disk

and RAM memory consumption. Considering both efficiency and

effectiveness results presented in this work, we believe our proposed

network matches with our aims of achieving a CNN-based method

more appropriate for a restrictive computing scenario.

E. Text Recognition Task

Similar to TextBoxes++, we also take advantage of Convolutional

Recurrent Neural Network (CRNN) [14] to recognize text in can-

didate regions provided by Pelee-Text network toward building an

end-to-end solution. Table VI presents a comparison of performance

results for Pelee-Text and end-to-end recognition approaches avail-

able in the literature on the ICDAR’2013 and ICDAR’2015 datasets.

Compared to state-of-the-art methods in terms of F-measure, our



TABLE IV: Text detection results on ICDAR’2013 and ICDAR’2015 datasets.

ICDAR’2013 ICDAR’2015 Model
Methods P(%) R(%) F1(%) FPS P(%) R(%) F1(%) FPS MB #Parameters

FCN [34] 88.00 78.00 83.00 < 1.00 71.00 43.00 54.00 < 1.00 57 –

LC [15] 93.30 79.40 85.80 10.40 94.10 70.70 80.70 3.60 162 –

PixelLink 2s [19] 86.40 83.60 84.50 – 85.50 82.00 83.70 3.00 246 –

TextField [20] −− −− −− – 84.30 80.50 82.40 6.00 138 –

MaskTextSpotter [21] 95.00 88.60 91.70 4.60 91.60 81.00 86.00 4.80 348 –

PSENet [23] −− −− −− – 86.92 84.50 85.69 1.60 219 –

FOTS [10] −− −− 88.23 23.90 91.00 85.17 87.99 7.80 – 34.98M

Textboxes++ [4] 74.00 86.00 80.00 11.60 76.70 87.20 81.70 11.60 133 –

Pelee-Text 768 80.13 79.87 80.00 18.64 −− −− −− −− 40 10.35M

Pelee-Text 1024 −− −− −− −− 85.19 72.27 78.20 11.67 40 10.35M

LC MS [15] 92.00 84.40 88.00 1.00 89.50 79.70 84.30 1.00 162 –

PixelLink 2s MS [19] 88.60 87.50 88.10 – −− −− −− −− 246 –

TextField MS [20] −− −− −− – 83.90 84.30 84.10 1.80 138 –

FOTS MS [10] −− −− 92.50 – 91.85 87.92 89.84 −− – 34.98M

Textboxes++ MS [4] 91.00 84.00 88.00 2.30 87.80 78.50 82.90 2.30 133 –

Pelee-Text MS 88.41 82.28 85.24 2.93 87.73 73.66 80.08 2.93 40 10.35M

TABLE V: Text detection results on MSRA-TD500 dataset.

Methods P (%) R (%) F1 (%)

EAST [35] 67.43 87.28 76.08

FCN [34] 83.00 67.00 74.00

LC [15] 87.60 76.20 81.50

SegLink [36] 86.00 70.00 77.00

TextSnake [18] 83.20 73.90 78.30

PixelLink 2s [19] 83.00 73.20 77.80

TextField [20] 87.40 75.90 81.30

Pelee-Text 768 74.78 73.88 74.33

Pelee-Text MS 89.40 73.88 80.90

TABLE VI: End-to-end evaluation.

ICDAR’2013 ICDAR’2015
Methods Strong Weakly Generic Strong Weakly Generic

Neumann [37] 77.00 63.10 54.20 35.00 19.90 15.60

MaskTextSpotter [21] 92.20 91.10 86.50 79.30 73.00 62.40

FOTS MS [10] 91.99 90.11 84.77 83.55 79.11 65.33

Textboxes++ MS [4] 93.00 92.00 85.00 73.34 65.87 51.90

Pelee-Text MS 87.63 87.21 82.11 73.81 71.14 58.66

approach presented competitive on the ICDAR’2013 dataset. On the

other hand, for the ICDAR’2015 dataset, we reached superior results

than our directly related work (Textboxes++), with an improvement of

0.47, 5.27 and 6.76 percentage points considering the generic, weakly

and strong lexicons, respectively. Additionally, on ICDAR’2011, in

terms of F-measure, Pelee-Text obtained 85.33, 84.63, and 81.95
considering the strong, weakly and generic lexicons, respectively.

F. Discussion

Experimental results provided an overview of the performance of

our proposed method, in terms of its effectiveness and efficiency,

considering recent works published in the literature. The experi-

ments showed that Pelee-Text is a very efficient and yet effective

method for detecting text in several scenarios including born-digital

images, scene text, multi-oriented textual elements, and bilingual

texts. Figure 2 illustrates examples of success and failure, from

which we can observe that the Pelee-Text network was able to detect

textual elements in different orientations even considering complex

backgrounds, and detections considering English and Chinese lan-

guages. On the other hand, Pelee-Text had some difficulty to localize

texts in defocused scenes, textured textual elements in complex

background, and (near)-vertical texts. We believe that we could

improve our results, by focusing on these difficulties through smart

data augmentation strategies, adopting new protocols for training, and

considering other datasets for pre-training as some state-of-the arts

methods do. We leave this investigation for future work.

V. CONCLUSIONS

This paper introduced a novel method for localizing and recogniz-

ing text in digital and natural scenes. Different from other works, our

proposal focuses on devising and development of a tiny convolutional

neural network for dealing with text localization inspiring its uses

on mobile-oriented applications. In this work, we adapted the Pelee

network, which was recently proposed for object detection, for

our target problem, keeping in mind some particularities of textual

elements. Motivated by the TextBoxes++ network, we proposed a

mobile-based CNN architecture considering design decisions that

favour detection of long and oriented textual elements such as use

of polygonal bounding boxes, convolutional layers with rectangular

receptive field, and default bounding boxes with different aspect

ratios. The experimental results showed the effectiveness of the

proposed method and also the improvements, in terms of efficiency,

brought in this research, in comparison to current state-of-the-art

methods for localizing text in natural scenes. This work showed the

feasible of using a tiny CNN architecture for designing efficient text

localization methods, which goes in opposite to recent trends in the

text localization community, which has been adopting the fusion of

deep architectures for devising novel text detectors.

Future research efforts will focus on better-characterizing texts

with arbitrary shapes and (near)-vertical textual elements, considering

polygon-based bounding boxes represented with more than four

vertices or even pixel-based regression in text detection based on

networks designed for segmentation problems.
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